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Boundary-�tted non-linear dispersive wave model for regions
of arbitrary geometry
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SUMMARY

A vertically integrated non-linear dispersive wave model is expressed in non-orthogonal curvilinear co-
ordinate system for simulating shallow or deep water wave motions in regions of arbitrary geometry.
Both dependent and independent variables are transformed so that an irregular physical domain is
converted into a rectangular computational domain with contravariant velocities. Thus, the wall condition
for enclosures surrounding a typical physical domain, such as a channel, port or harbor, is satis�ed
accurately and easily. The numerical scheme is based on staggered grid �nite-di�erence approximations,
which result in implicit formulations for the momentum equations and semi-explicit formulation for
the continuity equation. Test cases of linear wave propagation in converging, diverging and circular
channels are performed to check the reliability of model simulations against the analytical solutions.
Cnoidal waves of di�erent steepness values in a circular channel are also considered as examples to
non-linear wave propagation within curved walls. In closing, remarks concerning versatility and practical
uses of the numerical model are made. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: water waves; non-linearity; dispersion; boundary-�tted co-ordinates

1. INTRODUCTION

Adoption of curvilinear co-ordinates in engineering problems involving irregular lateral bound-
aries began in the early 1980s and since then continued in an expanding manner. Through
the years, appropriate arrangement of the transformed governing equations and their numer-
ical treatment have been worked out in di�erent contexts for revealing the most suitable
techniques and obtaining the most reliable results. Today, the overall approach to numerical
solution of an engineering problem in boundary �tted curvilinear co-ordinates is more or less
a well-established procedure [1, 2].
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Earlier attempts of formulating circulation or tidal wave models in boundary-�tted co-
ordinates focused on the geometrical transformation alone (i.e. the transformation of the inde-
pendent variables only) thus keeping the original Cartesian velocities as dependent variables
[3–5]. Later studies revealed that use of the Cartesian velocities introduces de�nite numerical
restrictions and inaccuracies (see Reference [6] for more details). For a circulation model
Sheng [7] was the �rst to transform both the dependent and the independent variables hence
expressing the equations in terms of contravariant velocities.
A three-dimensional tidal wave model in boundary-�tted co-ordinates with a �-stretching

in the vertical co-ordinate was presented by Bao et al. [8]. Hsu et al. [9] formulated a
depth-averaged curvilinear free surface model in two dimensions for open channel �ows.
Li and Zhan’s [10] work on an improved Boussinesq model in boundary-�tted co-ordinates
may be considered as a notable exception to non-dispersive wave models. Romanenkov et
al. [11] investigated the e�ects of using di�erent velocity variables in viscous shallow-water
equations, and, quite recently, Sankaranarayanan and Spaulding [12] studied the e�ects of grid
non-orthogonality on the solution of shallow water equations in boundary-�tted co-ordinate
systems.
The present work contributes to a relatively less exploited application area of the curvilinear

co-ordinate transformations and expresses a non-linear-dispersive wave model, valid for arbi-
trary relative depths, in curvilinear co-ordinates in terms of the contravariant velocities. The
transformation is accomplished in the simplest manner possible by re-arranging the original
wave equations in forms suitable for straightforward transformations. A second-order radiation
condition, which includes Sommerfeld’s radiation condition as special case, is also expressed
in curvilinear co-ordinates for use as outgoing boundary condition. The resulting transformed
equations are then numerically solved using �nite-di�erence approximations with staggered
girds. Use of contravariant velocities is found to be particularly advantageous for physical
domains involving walls with curved surfaces. Several tests are considered for checking the
reliability of the numerical scheme. First, linear long wave propagation across a channel
of gradually varying cross-section is simulated to compare the amplitude variations against
Green’s analytical formula. Wave simulations in a circular channel is considered next to com-
pare the numerically obtained solutions with the exact analytical solutions. The results for
all these test cases show almost perfect agreement between the analytical and the numerical
solutions. Finally, cnoidal waves of di�erent wave steepness values in a circular channel are
considered as examples to non-linear wave transformations in irregular geometries. Promi-
nent features of the non-linear simulations are emphasized. In closing, comments are made
on possible practical applications and extensions of the present model to more realistic wave
conditions, such as breaking.

2. TRANSFORMATION OF WAVE MODEL

The wave model used in this work is the one-component form of the fully dispersive non-
linear model of Nadaoka et al. [13]. The model is operational for both shallow and deep
water waves; hence, it can reproduce the cnoidal and the second-order Stokes waves equally
well, besides simulating narrow-banded non-linear random waves over arbitrary depths. The
continuity equation, and x- and y-component of the momentum equation, when expressed in
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suitable forms for the transformations, may be written as

�t + [(C2p =g+ �)u]x + [(C
2
p =g+ �)v]y=0 (1)

rut +
[
g�+

1
2
(1− 3!2C2p =g2)(u2 + v2)

]
x

=
1

!2C2p
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rvt +
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1
2
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]
y

=
1

!2C2p
[C4p (1− r)(ux + vy)t]y (3)

where � is the free surface elevation, u and v are the Cartesian components of the horizontal
velocity vector at the still water level z=0, and g is the gravitational acceleration. Cp and
Cg are, respectively, the phase and group velocities computed according to linear theory for
a speci�ed wave frequency ! and a given local depth h, and r=Cg=Cp. A subscript stands
for partial di�erentiation with respect to the indicated variable. The non-linear terms �wt
and w2 in Equations (2) and (3) have been re-expressed as �wt = − (!2C2p =g

2)(u2 + v2)
and w2 = − (!2C2p =g2)(u2 + v2) using the zeroth-order relations �= ± (Cp=g)(u2 + v2)1=2 and
w= �t = ∓ i!�= ∓ i(!Cp=g)(u2+v2)1=2 (see Reference [14]) for facilitating the rearrangement
of the equations in the above forms.
Coordinate transformations from a two-dimensional Cartesian system (x; y; t) to a two-

dimensional curvilinear system (�; �; �) are given by [1]
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in which the metrics are de�ned as

�x= Jy�; �y=−Jx�; �x=−Jy�; �y= Jx� (5)

with J =(x�y� − x�y�)−1 being the Jacobian of the transformation.
From Equations (1)–(3) it is obvious that expressing ux+ vy and u2 + v2 in curvilinear co-

ordinates in terms of the contravariant velocities would basically complete the transformation
process. Making use of (4) and (5), denoting the contravariant velocity components in the
�- and �-directions by U and V while noting that they are de�ned as U = J (y�u− x�v) and
V = J (−y�u+ x�v), gives

ux + vy = J (U ∗
� + V

∗
� ) (6)

u2 + v2 = (�2x + �
2
y)U

∗2 + (�2x + �
2
y)V

∗2 − 2(�x�x + �y�y)U ∗V ∗ (7)

where U ∗ and V ∗ are de�ned as U ∗=U=J , V ∗=V=J for notational convenience.
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The continuity equation is transformed in a manner quite similar to Equation (6) and
therefore no detail is given here. The momentum equations in the �- and �-direction are
obtained by combining the x- and y-momentum equation as follows. Substitute (6) and (7)
into (2) and (3), then multiply (2) by �x, (3) by �y, and �nally add the resulting equations to
get the �-momentum equation. In a similar vein, multiply (2) by �x, (3) by �y, and add the
equations to get the �-momentum equation. Thus, the wave model in curvilinear co-ordinates
in terms of the contravariant velocity components U ∗=U=J and V ∗=V=J becomes

�� + J [(C2p =g+ �)U
∗]� + J [(C2p =g+ �)V

∗]�=0 (8)

rJU ∗
� + �

2
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=
�2∗
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∗
� )]�� +

�∗�∗
!2C2p

[C∗(U ∗
� + V

∗
� )]�� (9)

rJV ∗
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∗
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where
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1
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2
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�∗�∗ = �x�x + �y�y; C∗=C4p (1− r)J

Note that for the special case of a rectangular physical domain, �x=1, �y=0, �x=0 and
�y=1, the above equations become identical with the original equations.

3. BOUNDARY CONDITIONS

Three di�erent boundary conditions are considered: incoming boundary condition, wall con-
dition and outgoing boundary condition. The �rst two conditions are quite easy to deal with
while the outgoing boundary condition requires some care.
At the incoming boundary, which is taken along the �-axis at �=0, the free surface dis-

placement � is speci�ed by assigning time series of a de�nite wave form. For unidirectional
waves, U ∗ is obtained from the relation U ∗=(�xu+�yv)=J , using u=C�=(C2p =g+�) and v=0,
as dictated by the non-linear continuity equation for unidirectional periodic waves of celerity
C, which, for non-linear waves, may be di�erent from Cp used in wave equations. Directional
waves at the incoming boundary can still be generated by using these speci�cations, it is only
necessary to introduce an appropriate phase angle for each grid point along the �-axis on the
boundary.
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Since the wave model is formulated in terms of the contravariant velocities, the wall con-
dition even for irregular geometries can be speci�ed by simply requiring the contravariant
velocity component normal to the wall boundary vanish. Thus, unlike models formulated in
terms of the Cartesian velocities, no iteration is needed for satisfying the wall condition;
consequently the results are more accurate.
The radiation condition for outgoing waves usually requires particular attention due to un-

desirable re�ection e�ects which contaminate the solution within the domain. For unidirec-
tional waves the classical radiation condition is given by Sommerfeld’s equation ut ±Cux=0,
which implies right or left going unidirectional waves of constant celerity C in the x-direction.
Various absorbing boundary conditions have been proposed (see for instance, References
[15–17]). Among such conditions Engquist and Majda’s [15] second-order radiation condi-
tion is particularly suitable for the present scheme. For waves moving primarily in the x- and
y-directions, respectively, their second-order condition is

utt ± Cuxt − 1
2
C2uyy=0; vtt ± Cvyt − 1

2
C2vxx=0 (12)

The numerical approach adopted in this work uses only two time levels; hence, time derivatives
must not exceed the �rst order. To meet this requirement the above equations are split as

ut ± Cux = P; Pt − 1
2
C2uyy=0 (13)

vt ± Cvy =Q; Qt − 1
2
C2vxx=0 (14)

Note that for P=Q=0, (13) and (14) give Sommerfeld’s radiation condition in the x- and
y-direction.
Unless some simpli�cations are introduced the transformations of Equations (13) and (14)

to the curvilinear co-ordinates result in quite cumbersome expressions. To this end, assuming
an unvarying geometry for the physical domain in the vicinity of the outgoing boundary would
be quite plausible, making the derivatives of the metrics zero. With the implementation of this
assumption and through appropriate combination of the equations the second-order radiation
condition of Engquist and Majda [15] in curvilinear co-ordinates for the �-and �-directions
becomes
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Figure 1. De�nition sketch of an arbitrary physical domain (left) and the corresponding computational
domain (right). The hatched lines indicate wall boundaries.
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If the physical domain is rectangular, �x=1, �y=0, �x=0 and �y=1; hence, (15) and (16)
reduce to (13) and (14), respectively.
While Equations (15) and (16) provide de�nitely better absorption of directional waves,

numerical experiments have revealed that their degenerate forms with P=0 and Q=0
(Sommerfeld’s equations) also provide quite acceptable results as long as outgoing waves
do not make acute angles with the boundary, as demonstrated for a ring test by
Beji and Nadaoka [18].

4. NUMERICAL APPROACH

Regardless of the shape of the physical domain, Equations (8)–(10) are solved in a perfectly
rectangular computational domain using �nite-di�erence approximations with unit grid sizes in
both directions. Figure 1 shows a sketch of an arbitrary physical domain and the corresponding
computational domain. Several di�erent approaches based on the staggered or non-staggered
grids are available. After trying three di�erent grid orientations (i.e. non-staggered grid, stag-
gered Arakawa B-grid, and staggered Arakawa C-grid [19]) it has been decided that staggered
Arakawa C-grid performed best for the equations used here. Figure 2 shows the grid orienta-
tion for the variables. All the derivatives are centred at the mid-time level t +�t=2, t being
the current time and �t the time step. The main wave propagation direction is taken along
the positive �-axis; therefore, �-momentum equation is solved �rst to obtain U ∗ for the new
time level t + �t, assuming the new time level values of � and V ∗ known. In accordance
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Figure 2. Grid orientation (staggered Arakawa C-grid) for the variables �, U∗ and V ∗.

with the grid system shown in Figure 2 the �-direction derivatives are discretized as

U ∗
� =

U ∗k+1
i+1; j −U ∗k+1

i−1; j +U
∗k
i+1; j −U ∗k

i−1; j
4

; S�=
Sk+1i+1; j − Sk+1i; j + Ski+1; j − Ski; j

2

V ∗
� =

V ∗k+1
i+1; j − V ∗k+1

i; j + V ∗k+1
i+1; j−1 − V ∗k+1

i; j−1 + V
∗k
i+1; j − V ∗k

i; j + V
∗k
i+1; j−1 − V ∗k

i; j−1
4

(17)

where i and j denote the indices in the �- and �- directions while k indicates the time level.
�-momentum equation is then solved for V ∗ using the new U ∗ values as computed from the
previous step. Likewise, the �- direction derivatives are discretized as

V ∗
� =

V ∗k+1
i; j+1 − V ∗k+1

i; j−1 + V
∗k
i; j+1 − V ∗k

i; j−1
4

; S�=
Sk+1i; j+1 − Sk+1i; j + Ski; j+1 − Ski; j

2

U ∗
� =

U ∗k+1
i; j+1 −U ∗k+1

i; j +U ∗k+1
i−1; j+1 −U ∗k+1

i−1; j +U
∗k
i; j+1 −U ∗k

i; j +U
∗k
i−1; j+1 −U ∗k

i−1; j
4

(18)

Note that in the computational domain ��=��=1 as indicated above. The rest of the
derivatives are discretized in a similar manner. The velocity computations require solutions
of tridiagonal matrix systems, which are accomplished very e�ciently by the Thomas algo-
rithm (see Reference [20, p. 40]). The surface displacement is obtained from a semi-explicit
discretization (i.e. explicit in �, implicit in U ∗ and V ∗) of the continuity equation, which is
treated as explicit in the computations. Finally, the radiation condition is implemented through
one-sided discretization of the spatial derivatives wherever needed; otherwise they are centred
following the usual approach. Since all these computations involve certain approximations, an
iterative procedure is needed. Through numerical experiments it has been ascertained that for
all the cases considered in this work, a maximum of �ve iterations were su�cient to obtain
reliable results. This was determined by continuously computing the di�erence between the
iteratively computed values of the normalized surface displacement (normalized with respect
to the incident wave amplitude) at every discreet point and requiring that the di�erence be
less than 10−5.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:643–657



650 S. BEJI AND B. BARLAS

5. TEST CASES AND NON-LINEAR WAVE SIMULATIONS

In order to perform checks on the reliability of the model developed, several test cases are
considered. Wave simulations in gradually converging, diverging and circular channels are
performed for comparisons with the corresponding analytical results while cnoidal waves of
di�erent steepness in a circular channel are also simulated as examples to non-linear wave
transformations within curved boundaries.

5.1. Linear waves in gradually converging and diverging channels

First, linear long wave propagation across a converging channel is simulated and the mag-
ni�cation of the wave amplitude is compared with the theoretical formula of Green. The
period of the incident wave is T =10 s and the water depth is h=1 m, which result in a
depth to wavelength ratio of approximately h=L= 1

30 , indicating a long wave. The channel
width b0 = 30m at x=0m reduces to half its initial value after a distance of 10 wavelengths.
For such a varying channel Green’s formula (see Reference [21, Section 185]) predicts an
amplitude variation according to

a(x)= a0
√
b0=b(x) (19)

where a0 and b0 are, respectively, the wave amplitude and the channel width at x=0 m
while a(x) and b(x) are the corresponding values at an arbitrary location x along the channel.
Simulations are performed for �t=T=40 s and �x=L=40m thus making the Courant number
in the propagation direction Cr=C�t=�x exactly one. The Courant number does not have to
be unity; however, numerical trials indicate better results for Cr=1. The crosswise resolution
is taken as �y= b(x)=15m while Equation (15) with P=0 (Sommerfeld’s equation) is used
as the radiation condition at x=10Lm. The grids in the physical domain were not orthogonal
since they were generated by making equal and straight divisions in the x- direction and
then dividing the corresponding channel widths into equal lengths. Hence, the simulation also
works as a check on the non-orthogonal terms. Figure 3(a) shows a perspective view of the
fully developed wave �eld while Figure 3(b) compares the numerically computed wave form
along the mid-section with Green’s formula.
A counterpart of the above simulation is performed for a diverging channel with identical

incident wave and water depth conditions. In contrast to the previous case the channel width
doubles its initial value after 10 wavelengths while Green’s formula still remains valid as
given above. Figure 4(a) shows the perspective view and Figure 4(b) compares the computed
and theoretical values as in Figures 3(a) and 3(b). For both cases the agreement with the
theory is almost perfect.

5.2. Linear waves in a circular channel

Equations (8)–(10) are now used for the simulation of waves in a circular channel. Since
the analytical solution is available only for linear waves the simulations are performed for the
linearized versions of the equations �rst.
In the context of acoustics, Rosta�nski [22] studied the sound propagation in a curved duct.

The analytical solution, which may be readily adapted to the present problem, is as follows.
Surface elevation in polar co-ordinates (r=

√
x2 + y2; �= arctan y=x) is expressed as a linear
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Figure 3. (a) Perspective view of the fully developed wave �eld in a converging channel;
and (b) comparison of the numerically computed amplitude magni�cation with

Green’s analytical formula.
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Figure 4. (a) Perspective view of the fully developed wave �eld in a diverging channel;
and (b) comparison of the numerically computed amplitude attenuation with

Green’s analytical formula.
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combination of di�erent modes, which are given in terms of the Bessel functions of the �rst
and second kind:

�(r; �; t)=
N∑
n=1
[anJ�n(kr) + bnY�n(kr)]e

i�n�ei!t (20)

where ! is the wave frequency, k is the wave number and the orders �n of the Bessel functions
are to be determined from Equation (23) below. The boundary conditions on the inner wall
@�=@r|r=ri = 0 and outer wall @�=@r|r=ro = 0 give, respectively,

anJ ′
�n(kri) + bnY

′
�n(kri) = 0 (21)

anJ ′
�n(kro) + bnY

′
�n(kro)=0 (22)

in which the primes denote di�erentiation with respect to r while ri and ro denote the inner and
outer radii of the circular channel. Eliminating an and bn from the above equations provides
the condition for determining �n:

J ′
�n(kri)Y

′
�n (kro)− J ′

�n(kro)Y
′
�n(kri)= 0 (23)

Imposing the incident wave amplitude as �(r; 0; 0)=1 at the channel entrance �=0, noting
that each component function is orthogonal with weight 1=r, the coe�cients an and bn are
determined as

an=Y ′
�n(kri)

∫ ro
ri
(Fn(r)=r)dr∫ ro

ri
(F2n (r)=r)dr

; bn=− J
′
�n(kri)
Y ′
�n(kri)

an (24)

where Fn(r)= J�n(kr)Y
′
�n(kri) − Y�n(kr)J

′
�n(kri) is obtained by solving (21) for bn and then

substituting it into (20). Note that bn could be expressed using Equation (22) as well.
For the test case considered here the inner radius of the channel is taken as ri = 25 m and

the outer radius as ro = 50 m: the channel covers an arc of 180◦. The water depth and the
incident wave period are selected as h=1m and T =4s, respectively. These parameters result
in a wavelength of L=12 m and wave number k=0:52 rad=m.
Using Equation (20) the analytical solution is established from the superposition of N =5

di�erent modes, which are computed as �n=5:08; 12:31; 15:14; 18:62; 23:83 from Equation (23)
for ri = 25 m, ro = 50 m and k=0:52 rad=m.
In the numerical simulations sinusoidal waves with a uniform amplitude are imposed across

the channel at the entrance while Equation (15) is used as the radiation condition at the end
of the computational domain. In the physical domain, a constant angular grid spacing of
��=�=500 radian is used along the channel while the grid spacing in the radial direction is
�r=1 m. The time resolution is taken as �t=T=50 s so that the average Courant number
(computed by averaging the arc lengths corresponding to the inner and outer radii) in the
wave propagation direction was approximately unity.
As the waves propagate in the circular channel, they re�ect from the outer wall and di�ract

in the vicinity of the inner wall thus creating quite complicated patterns as shown in the
perspective views at t=8T s and t=20T s in Figures 5(a) and 5(b), respectively.
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Figure 5. (a) Perspective view of the wave �eld at t = 8T in a circular channel; and (b) perspective view
of the wave �eld at t = 20T in a circular channel.

In order to make comparisons with the theory, the contours of the analytical solution and
the fully developed wave �eld as obtained from the numerical solution after 20 wave periods
elapsed are depicted together in Figure 6. Except for minor di�erences the two solutions
remarkably agree with each other and establish con�dence in the model equations and the
numerical code.
Finally, comparisons of the surface displacement between the analytical and numerical so-

lution along the inner wall and the outer wall are presented in Figures 7(a) and 7(b). As
the �gures reveal, the agreement with the theory is excellent even for such a case involving
complicated re�ection and di�raction patterns. Thus, the test provides a de�nite conclusion
regarding the reliability of the equations derived.

5.3. Cnoidal waves in a circular channel

Korteweg and DeVries [23] coined the word cnoidal for non-linear periodic waves of per-
manent shape in shallow water. The present wave model is also capable of reproducing the
cnoidal waves besides being valid for deep water waves. In order to investigate the e�ects of
non-linearity as well as exploring the capabilities of the present model, simulations of cnoidal
waves in a circular channel are carried out. According to the cnoidal wave theory only two
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Figure 6. Contours of the analytical solution (left-half) and the numerical solution
(right-half) after 20 wave periods.

dimensionless parameters may be selected freely; the rest of the physical quantities, such as
wave period, wavelength and celerity are �xed according to these two parameters and the com-
plete elliptic integrals E(m) and K(m) which are de�ned by E(m)=

∫ �=2
0 (1 − m sin2 �)1=2 d�

and K(m)=
∫ �=2
0 (1 − m sin2 �)−1=2 d� as a function of the modulus m. In principle it is pos-

sible to select a de�nite period and wavelength, and then determine the corresponding wave
steepness and modulus, but this approach is quite tedious due to the dependency of E(m) and
K(m) on m. Therefore, in the simulations presented here, two di�erent wave steepness values
	=H=h (H wave height) and modulus m are selected �rst, and then, taking the water depth
h=1 m as in the simulation of linear waves, the remaining physical quantities T , L, C and
the surface displacement � are computed according to the original cnoidal theory [23]. Owing
to the re�ections from the outer wall, waves become quite steep (as much as �ve times the
initial amplitude); therefore, moderate wave steepness values 	=0:1 and 0.3 are used for the
incoming waves. The modulus m for each wave steepness 	 is determined by trial and error
in such a way as to make the wavelength the same for both cases, which in turn is the same
as the linear case L=12 m. Accordingly, m=0:66 for 	=0:1 and m=0:95 for 	=0:3 are
used. Numerical conditions (time and space resolutions, etc.) were identical to those used in
the linear simulations.
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Figure 7. (a) Comparison of the analytical solution (solid line) with the numerical solution
(dashed line) at t = 20T along the inner wall of the circular channel; and (b) Comparison of
the analytical solution (solid line) with the numerical solution (dashed line) at t = 20T along

the outer wall of the circular channel.

Since the dimensions of the circular channel is kept the same for all (linear and cnoidal)
simulations it is aimed to maintain a geometric similarity by keeping the wavelength the same
as well, for all the cases. In this way, it is possible to observe the prominent features and
e�ects of non-linearity which arise principally from the high wave steepness. Figures 8(a)
and 8(b) show the fully developed wave �elds for two di�erent wave steepness values. As
expected, 	=0:1 case, being rather weak in non-linearity, resembles the linear case; however,
as the wave steepness becomes higher, due to the asymmetric form of the waves, re�ections
from the outer wall increase considerably and the patters become sharper. For 	=0:3 the
highest point of the normalized surface elevation is very nearly twice that of the linear case
and the overall appearance of the wave �eld di�ers considerably from that of the linear case.
The Stokes-type waves of di�erent steepness values were also simulated by increasing the

water depth to h=10 m and adjusting the wave period so that the wavelengths would be
the same as the other simulations. Increased water depth raised the relative depth to h=L� 1,
which is more appropriate for the deep water character of the Stokes waves. Since the Stokes
waves are asymmetric compared to the linear waves but not as asymmetric as the cnoidal
waves, the resulting wave patterns were expectedly between those of the linear and of the
cnoidal waves. Therefore, observing no distinguished features, the �gures of these simulations
are excluded.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:643–657



656 S. BEJI AND B. BARLAS

Figure 8. (a) Perspective view of the fully developed cnoidal wave �eld for 	 = 0:1 at t = 20T
in a circular channel; and (b) Perspective view of the fully developed cnoidal wave �eld for

	 = 0:3 at t = 20T in a circular channel.

6. CONCLUDING REMARKS

Non-linear dispersive wave equations in boundary-�tted non-orthogonal curvilinear co-
ordinates have been developed based on the one-component from of the wave model of
Nadaoka et al. [13], which is valid for narrow-banded non-linear waves in arbitrary depths.
Finite-di�erence approximations with a staggered grid system (Arakawa C-grid) is adopted for
the numerical solution of the resulting boundary-�tted wave equations. Comparisons with the
analytical solutions for gradually varying channels and circular channels provide convincing
evidence, at least for linear wave �elds, for the reliability and accuracy of the model equa-
tions and the numerical approach. The cnoidal waves in a circular channel are also simulated
for two di�erent wave steepness values to demonstrate the model’s capability of simulat-
ing non-linear waves as well as revealing prominent di�erences compared to the linear case.
As presented here, the model equations are capable of simulating narrow-banded non-linear
wave motions in geometrically irregular regions. For practical uses, inclusion of the wave
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breaking e�ect, albeit in a semi-empirical manner, is desirable especially in simulations
involving nearshore regions.
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